Connect with us


How to Set up Your New Computer



So you’ve got a new computer. Awesome! That humble metal box is the key to a wide world of potential. It can help you with everything from juggling your finances to keeping in touch with your family to blowing off some steam on, uh, Steam.

But a new PC isn’t like a new car; you can’t just turn a key and put the pedal to the metal. Okay, maybe you can—but you shouldn’t. Performing just a few simple activities when you first fire it up can help it be safer, faster, and better poised for the future. Here’s how to set up a new laptop or desktop computer the right way, step by step.

Run Windows Update on your new PC

The first step is by far the most tedious. You shouldn’t muck around on the web unless your copy of Windows is fully patched and up to date, period. Now for the bad news: Depending on how long your PC sat on the retail shelf, this could take minutes—or hours. Either way, it has to get done.

Microsoft releases new Windows patches at least once per month. The most recent “major” upgrade for the operating system came in the form of the ho-hum Windows 10 November 2021 Update; those larger “milestone” releases occurred twice per year in the past, but will slow to one per year in the future. Windows 11, on the other hand, just launched in October, so laptops with that installed should be pretty current. If your computer isn’t fully patched, you could be missing key security fixes and notable new features.

Keep updating Windows until it says you’re all caught up.

First, make sure your PC’s connected to the internet. In Windows 10, open the Start menu and head to Settings Update and securityCheck for Updates. Your system will search for updates, and find some. Download and install them, then reboot your computer and do it again… and again… and again… until the update check fails to return new entries. Hopefully it won’t take too long, but in worst-case scenarios updating a new computer can take an hour or more.

On the bright side, Windows will download and install new updates as they roll out in the future. You just have to get over this initial hump!

If your new laptop came with Windows 10 installed, you may see the option to upgrade to Windows 11. We recommend skipping Windows 11 for now. There’s not only a new interface to learn, but the fresh-out-of-the-oven operating system also has multiple rough edges and outright bugs in these early days. Feel free to read our exhaustive Windows 11 review and decide for yourself if it’s offered, though.

Install your favorite browser

Surfing the web in an unfamiliar browser is like trying to tango while you’re wearing someone else’s shoes. It can be done, but it ain’t pretty. Here are direct links for Chrome, Firefox, and Opera if Edge isn’t your thing.

Chrome has been our go-to pick for years, but the Chromium-based version of Microsoft’s Edge upset the long-time champion in our most recent round of web browser testing. Edge is the best browser you can use right now if you don’t mind breaking away from Chrome, and better yet, it’s Windows 10’s default. If your tastes lean more exotic, you could always dabble with one of these 10 obscure, highly specialized browsers, too.

Set up your new PC’s security

Now that you’ve slipped into something more comfortable, it’s time to get your security ducks in a row.

Windows Security in Windows 10.

The best overall antivirus suite

Windows ships with Windows Security enabled by default unless your laptop or desktop includes a third-party antivirus trial. Windows Security is a solid, if not overly detailed solution that’s dead-simple to use, great at sniffing out malware, and probably good enough for most people. It isn’t the most full-featured anti-malware solution out there, though. You can’t even schedule scans! PCWorld’s guide to the best antivirus for Windows PCs can help you find all the right tools to keep your PC protected. 

We also have a guide to building a solid free security suite, but it takes more legwork and hassle than premium antivirus options.

Clean your computer’s bloatware

With your defenses up, it’s time to start shoveling the crap out of your PC.

You can skip this step if you built your own Windows PC. Straight Windows installations don’t come with excess junk cluttering up your hard drive. But boxed PCs from big-name PC makers are inevitably brimming with bloatware.

The easiest way to jettison the junk is by typing “Add and remove programs” into the Windows search box, then selecting the option that appears at the top of the results. Go through the list and uninstall any unwanted programs. Don’t delete apps from your hardware’s makers—leave software from the likes of Intel, AMD, Nvidia, Microsoft, and HP or Lenovo alone, for example—but feel free to wipe out any bundleware you see. Some of the most commonly preinstalled apps are antivirus trials, Dropbox, Candy Crush, Netflix, Spotify, “App Collections,” and others.

If you’d rather nuke everything from above, Microsoft also offers a downloadable tool that installs a clean copy of the most recent version of Windows 10 Home or Windows 10 Pro but without any apps that aren’t part of Microsoft’s default Windows 10 setup. It seriously doesn’t mess around, as Microsoft drives home in the tool’s description: “Using this tool will remove all apps that don’t come standard with Windows, including other Microsoft apps such as Office. It will also remove most pre-installed apps, including manufacturer apps, support apps, and drivers.”

This tool will wipe out any product keys or digital licenses associated with that software too, so if you want to keep some of the software being blasted away (like Office, say), be sure to jot down the product key before using Microsoft’s fresh-start tool, using something like Belarc Advisor to find it. 

Fill your new computer with software

Why would you scrap all that junk and clutter? To make room for your own stuff, silly. New hardware just begs for software to match!

Outfitting your rig is an intensely personal affair, but if you’re looking for suggestions, PCWorld has a guide to the best free programs that are so helpful, so handy, so downright useful that they should be welcome on pretty much any PC. These review roundups and software guides can also direct you towards some of the best programs around:

The best free Microsoft Office alternatives5 free Windows power tools we can’t live withoutThe best password managersThe best PDF editors7 free programs every PC gamer needsThe best VPNs5 free Photoshop alternatives for WindowsHow to play DVDs in Windows 10 for free

Head towards Ninite when it comes time to actually install all that software. Ninite lets you install numerous free applications of your choice all at once, even going so far as to automatically disable the bundled crapware that many free programs try to sneak in as part of the installation process. It’s a wonderfully handy tool that takes the pain out of loading up a new PC.

If your new laptop came with Windows 11 preinstalled, you might be uncomfortable with its radical new Start menu and taskbar design. Consider checking out StartAllBack or Stardock’s Start11 if so. Both of these $5 programs help you reconfigure the look and feel of Windows 11 in ways the operating system itself doesn’t. You can have it back to feeling normal in no time.

Back up your new computer

After all that, your PC is finally ready to rock: It’s safe, up to date, scrubbed free of junk, and full of software fine-tuned to meet your specific needs. The end is in sight! But we’re not done juuuuuust yet.

Now that your PC’s in fighting shape it’s an ideal time to create a clone or image of your primary hard drive—the one Windows boots from—and save it to another hard drive. A clone or image creates a snapshot replica of your drive, which you can use to boot up Windows if your primary drive gives up the ghost. Having an image of your system in its current updated, bloatware free, customized state prevents you from having to do all that legwork over again if you ever have to reinstall Windows for any reason.

The best Windows backup software

Acronis True Image 2021

Best Prices Today:

$50 at Acronis

So what’s the difference between a clone and an image? Essentially, a clone creates an exact copy of your hard drive on another drive—files, master boot record, and all. The clone consumes the entire hard drive, but it’s plug-and-play if you ever need to use it. Images, on the other hand, create a single, mammoth file containing all the stuff on your PC. It takes a bit more work to get an image backup ready to roll after a disaster, but you have more flexibility in how you store it, since it’s essentially just a great big file. Lincoln Spector has a more detailed comparison if you’re interested.

There are excellent backup tools available that let you create clones and images, which we cover in detail in PCWorld’s roundups of the best Windows backup software and best online backup services. Don’t want to pay for data protection? We’ve also rounded up the best free backup options, and if you don’t mind performing more technical gruntwork to save some cash, we explain how to use Windows’ native imaging tool step-by-step in PCWorld’s guide to creating a free, foolproof backup system. Use something though. Regular backups are your data’s only savior if disaster strikes.

Optional: Update your new PC’s drivers

This step isn’t for everyone. Few things can introduce troublesome ghosts in your machine faster than a driver that refuses to play nice for whatever reason. If your from-the-box desktop PC is working fine and you only ever plan to perform basic tasks like surfing the web, working with Office, and stuff like that, feel free to forget your computer even has drivers and keep on keeping on. Windows Update should’ve snagged reasonably new drivers for your hardware anyway.

You’ll spend some time staring at the Device Manager if you built your own PC and need to update your drivers manually.

But if you cobbled together a DIY rig or are rocking a gaming machine, it’s a good idea to see if newer drivers are available for your hardware. Windows Update isn’t always on the bleeding edge of driver updates, and new drivers for, say, your motherboard or network card can provide beneficial feature and performance updates. Gamers will need to update their graphics card drivers fairly often to ensure optimal performance in the newest games. (Fortunately, you can do that easily using Nvidia and AMD’s must-have graphics suites, and they’ll let you know when new ones are available.)

PCWorld’s guide to updating your Windows drivers has all the info you need to proceed. It was written for Windows 8, but if you search for Device Manager in Windows 10 or 11, all of the same steps outlined in the article still apply. If a driver does somehow manage to bork your PC, fear not, as Windows automatically creates a System Restore Point when you install new device drivers.

And if true disaster strikes in some bizarre, extreme case, you’ve got the backup image you’ve created—right?

Optional: Learn about your new computer

Now that all the hard work is done, take time to learn all the nooks and crannies of Windows—there’s an awful lot of surprisingly powerful, downright helpful tools and tricks hidden in its depths. Check out PCWorld’s guide to the best Windows 10 tips, tools, and tricks, which we update with every major Windows update. You’ll pick up a lot of helpful knowledge. We’ve also got a roundup of Windows 11’s best hidden features.


At this point you’re pretty much ready to roll. Sure, there are some other tasks you should perform, such as moving over files from your old PC and saving the product keys for Windows and your other installed software (again, Belarc Advisor rocks for that), but you can do all that at your leisure. For now, just bask in the glory of owning a new PC, secure in the knowledge that it’s fully optimized, protected against attack, and recoverable if disaster strikes.



Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *


We’ve Set Target to Build a New India Before 100th Year of Independence: PM Modi



New Delhi [India], January 23 (ANI): Prime Minister Narendra Modi after unveiling the hologram statue of Netaji Subhas Chandra Bose at India Gate on Sunday evening, said that the government has a target to build a new India before the 100th year of independence.
“Netaji used to say ‘Never lose faith in the dream of independent India. There is no power in the world that can shake India’,” PM Modi said while addressing the


Continue Reading


Letting Robocars See Around Corners



An autonomous car needs to do many things to
make the grade, but without a doubt, sensing and understanding its environment are the most critical. A self-driving vehicle must track and identify many objects and targets, whether they’re in clear view or hidden, whether the weather is fair or foul.

Today’s radar alone is nowhere near good enough to handle the entire job—cameras and lidars are also needed. But if we could make the most of radar’s particular strengths, we might dispense with at least some of those supplementary sensors.

Conventional cameras in stereo mode can indeed detect objects, gauge their distance, and estimate their speeds, but they don’t have the accuracy required for fully autonomous driving. In addition, cameras do not work well at night, in fog, or in direct sunlight, and systems that use them are prone to
being fooled by optical illusions. Laser scanning systems, or lidars, do supply their own illumination and thus are often superior to cameras in bad weather. Nonetheless, they can see only straight ahead, along a clear line of sight, and will therefore not be able to detect a car approaching an intersection while hidden from view by buildings or other obstacles.

Radar is worse than lidar in range accuracy and angular resolution—the smallest angle of arrival necessary between two distinct targets to resolve one from another. But we have devised a novel radar architecture that overcomes these deficiencies, making it much more effective in augmenting lidars and cameras.

Our proposed architecture employs what’s called a sparse, wide-aperture multiband radar. The basic idea is to use a variety of frequencies, exploiting the particular properties of each one, to free the system from the vicissitudes of the weather and to see through and around corners. That system, in turn, employs advanced signal processing and
sensor-fusion algorithms to produce an integrated representation of the environment.

We have experimentally verified the theoretical performance limits of our radar system—its range, angular resolution, and accuracy. Right now, we’re building hardware for various automakers to evaluate, and recent road tests have been successful. We plan to conduct more elaborate tests to demonstrate around-the-corner sensing in early 2022.

Each frequency band has its strengths and weaknesses. The band at 77 gigahertz and below can pass through 1,000 meters of dense fog without losing more than a fraction of a decibel of signal strength. Contrast that with lidars and cameras, which lose 10 to 15 decibels in just 50 meters of such fog.

Rain, however, is another story. Even light showers will attenuate 77-GHz radar as much as they would lidar. No problem, you might think—just go to lower frequencies. Rain is, after all, transparent to radar at, say, 1 GHz or below.

This works, but you want the high bands as well, because the low bands provide poorer range and angular resolution. Although you can’t necessarily equate high frequency with a narrow beam, you can use an antenna array, or highly directive antenna, to project the millimeter-long waves in the higher bands in a narrow beam, like a laser. This means that this radar can compete with lidar systems, although it would still suffer from the same inability to see outside a line of sight.

For an antenna of given size—that is, of a given array aperture—the angular resolution of the beam is inversely proportional to the frequency of operation. Similarly, to achieve a given angular resolution, the required frequency is inversely proportional to the antenna size. So to achieve some desired angular resolution from a radar system at relatively low UHF frequencies (0.3 to 1 GHz), for example, you’d need an antenna array tens of times as large as the one you’d need for a radar operating in the K (18- to 27-GHz) or W (75- to 110-GHz) bands.

Even though lower frequencies don’t help much with resolution, they bring other advantages. Electromagnetic waves tend to diffract at sharp edges; when they encounter curved surfaces, they can diffract right around them as “creeping” waves. These effects are too weak to be effective at the higher frequencies of the K band and, especially, the W band, but they can be substantial in the UHF and C (4- to 8-GHz) bands. This diffraction behavior, together with lower penetration loss, allows such radars to detect objects
around a corner.

One weakness of radar is that it follows many paths, bouncing off innumerable objects, on its way to and from the object being tracked. These radar returns are further complicated by the presence of many other automotive radars on the road. But the tangle also brings a strength: The widely ranging ricochets can provide a computer with information about what’s going on in places that a beam projected along the line of sight can’t reach—for instance, revealing cross traffic that is obscured from direct detection.

To see far and in detail—to see sideways and even directly through obstacles—is a promise that radar has not yet fully realized. No one radar band can do it all, but a system that can operate simultaneously at multiple frequency bands can come very close. For instance, high-frequency bands, such as K and W, can provide high resolution and can accurately estimate the location and speed of targets. But they can’t penetrate the walls of buildings or see around corners; what’s more, they are vulnerable to heavy rain, fog, and dust.

Lower frequency bands, such as UHF and C, are much less vulnerable to these problems, but they require larger antenna elements and have less available bandwidth, which reduces range resolution—the ability to distinguish two objects of similar bearing but different ranges. These lower bands also require a large aperture for a given angular resolution. By putting together these disparate bands, we can balance the vulnerabilities of one band with the strengths of the others.

Different targets pose different challenges for our multiband solution. The front of a car presents a smaller radar cross section—or effective reflectivity—to the UHF band than to the C and K bands. This means that an approaching car will be easier to detect using the C and K bands. Further, a pedestrian’s cross section exhibits much less variation with respect to changes in his or her orientation and gait in the UHF band than it does in the C and K bands. This means that people will be easier to detect with UHF radar.

Furthermore, the radar cross section of an object decreases when there is water on the scatterer’s surface. This diminishes the radar reflections measured in the C and K bands, although this phenomenon does not notably affect UHF radars.

The tangled return paths of radar are also a strength because they can provide a computer with information about what’s going on sideways—for instance, in cross traffic that is obscured from direct inspection.

Another important difference arises from the fact that a signal of a lower frequency can penetrate walls and pass through buildings, whereas higher frequencies cannot. Consider, for example, a 30-centimeter-thick concrete wall. The ability of a radar wave to pass through the wall, rather than reflect off of it, is a function of the wavelength, the polarization of the incident field, and the angle of incidence. For the UHF band, the transmission coefficient is around –6.5 dB over a large range of incident angles. For the C and K bands, that value falls to –35 dB and –150 dB, respectively, meaning that very little energy can make it through.

A radar’s angular resolution, as we noted earlier, is proportional to the wavelength used; but it is also inversely proportional to the width of the aperture—or, for a linear array of antennas, to the physical length of the array. This is one reason why millimeter waves, such as the W and K bands, may work well for autonomous driving. A commercial radar unit based on two 77-GHz transceivers, with an aperture of 6 cm, gives you about 2.5 degrees of angular resolution, more than an order of magnitude worse than a typical lidar system, and too little for autonomous driving. Achieving lidar-standard resolution at 77 GHz requires a much wider aperture—1.2 meters, say, about the width of a car.

Besides range and angular resolution, a car’s radar system must also keep track of a lot of targets, sometimes hundreds of them at once. It can be difficult to distinguish targets by range if their range to the car varies by just a few meters. And for any given range, a uniform linear array—one whose transmitting and receiving elements are spaced equidistantly—can distinguish only as many targets as the number of antennas it has. In cluttered environments where there may be a multitude of targets, this might seem to indicate the need for hundreds of such transmitters and receivers, a problem made worse by the need for a very large aperture. That much hardware would be costly.

One way to circumvent the problem is to use an array in which the elements are placed at only a few of the positions they normally occupy. If we design such a “sparse” array carefully, so that each mutual geometrical distance is unique, we can make it behave as well as the nonsparse, full-size array. For instance, if we begin with a 1.2-meter-aperture radar operating at the K band and put in an appropriately designed sparse array having just 12 transmitting and 16 receiving elements, it would behave like a standard array having 192 elements. The reason is that a carefully designed sparse array can have up to 12 × 16, or 192, pairwise distances between each transmitter and receiver. Using 12 different signal transmissions, the 16 receive antennas will receive 192 signals. Because of the unique pairwise distance between each transmit/receive pair, the resulting 192 received signals can be made to behave as if they were received by a 192-element, nonsparse array. Thus, a sparse array allows one to trade off time for space—that is, signal transmissions with antenna elements.

Seeing in the rain is generally much easier for radar than for light-based sensors, notably lidar. At relatively low frequencies, a radar signal’s loss of strength is orders of magnitude lower.Neural Propulsion Systems

In principle, separate radar units placed along an imaginary array on a car should operate as a single phased-array unit of larger aperture. However, this scheme would require the joint transmission of every transmit antenna of the separate subarrays, as well as the joint processing of the data collected by every antenna element of the combined subarrays, which in turn would require that the phases of all subarray units be perfectly synchronized.

None of this is easy. But even if it could be implemented, the performance of such a perfectly synchronized distributed radar would still fall well short of that of a carefully designed, fully integrated, wide-aperture sparse array.

Consider two radar systems at 77 GHz, each with an aperture length of 1.2 meters and with 12 transmit and 16 receive elements. The first is a carefully designed sparse array; the second places two 14-element standard arrays on the extreme sides of the aperture. Both systems have the same aperture and the same number of antenna elements. But while the integrated sparse design performs equally well no matter where it scans, the divided version has trouble looking straight ahead, from the front of the array. That’s because the two clumps of antennas are widely separated, producing a blind spot in the center.

In the widely separated scenario, we assume two cases. In the first, the two standard radar arrays at either end of a divided system are somehow perfectly synchronized. This arrangement fails to detect objects 45 percent of the time. In the second case, we assume that each array operates independently and that the objects they’ve each independently detected are then fused. This arrangement fails almost 60 percent of the time. In contrast, the carefully designed sparse array has only a negligible chance of failure.

The truck and the car are fitted with wide-aperture multiband radar from Neural Propulsion Systems, the authors’ company. Note the very wide antenna above the windshield of the truck.Neural Propulsion Systems

Seeing around the corner can be depicted easily in simulations. We considered an autonomous vehicle, equipped with our system, approaching an urban intersection with four high-rise concrete buildings, one at each corner. At the beginning of the simulation the vehicle is 35 meters from the center of the intersection and a second vehicle is approaching the center via a crossing road. The approaching vehicle is not within the autonomous vehicle’s line of sight and so cannot be detected without a means of seeing around the corner.

At each of the three frequency bands, the radar system can estimate the range and bearing of the targets that are within the line of sight. In that case, the range of the target is equal to the speed of light multiplied by half the time it takes the transmitted electromagnetic wave to return to the radar. The bearing of a target is determined from the incident angle of the wavefronts received at the radar. But when the targets are not within the line of sight and the signals return along multiple routes, these methods cannot directly measure either the range or the position of the target.

We can, however,
infer the range and position of targets. First we need to distinguish between line-of-sight, multipath, and through-the-building returns. For a given range, multipath returns are typically weaker (due to multiple reflections) and have different polarization. Through-the-building returns are also weaker. If we know the basic environment—the position of buildings and other stationary objects—we can construct a framework to find the possible positions of the true target. We then use that framework to estimate how likely it is that the target is at this or that position.

As the autonomous vehicle and the various targets move and as more data is collected by the radar, each new piece of evidence is used to update the probabilities. This is Bayesian logic, familiar from its use in medical diagnosis. Does the patient have a fever? If so, is there a rash? Here, each time the car’s system updates the estimate, it narrows the range of possibilities until at last the true target positions are revealed and the “ghost targets” vanish. The performance of the system can be significantly enhanced by fusing information obtained from multiple bands.

We have used experiments and numerical simulations to evaluate the theoretical performance limits of our radar system under various operating conditions. Road tests confirm that the radar can detect signals coming through occlusions. In the coming months we plan to demonstrate round-the-corner sensing.

The performance of our system in terms of range, angular resolution, and ability to see around a corner should be unprecedented. We expect it will enable a form of driving safer than we have ever known.

Source Here:

Continue Reading


Staff of China-Laos Railway Celebrate Upcoming Chinese New Year



© Provided by Xinhua

VIENTIANE, Jan. 23 (Xinhua) — China-Laos Railway Luang Prabang Operation Management Center, run by China Railway Kunming Group, held celebration activities on Sunday for the upcoming Chinese Lunar New Year.

Original Article:

Continue Reading